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We present a model to describe degenerate four-wave mixing in critical binary liquid mixtures and we
analyze it through an experimental study of phase conjugation in critical microemulsions. The two con-
centration gratings related to the four-wave-mixing configuration give contributions to the conjugated
signal which can be separated from their different formation and relaxation times. The model quantita-
tively describes the amplitude and the dynamics of the gratings and thus of the conjugate signal when
one approaches the critical point. The theoretical predictions fit very well with the experimental data.
Close to the critical point a 10% reflectivity has been obtained in this medium using a beam power of 1
W from a cw Ar* laser. The limitations of these reflectivities at higher powers are discussed.

PACS number(s): 64.60.Fr, 64.70.Ja, 42.65.Hw

Nonlinear optical techniques have been proved to be
an interesting tool to characterize the critical behavior of
liquid mixtures. Forced Rayleigh scattering (FRS) exper-
iments, for instance, have been performed to analyze the
critical properties of laser-induced concentration gratings
in such media [1,2]. The increase of the grating
reflectivity and the slowing down of the medium response
time when approaching a critical point have been ex-
plained in terms of critical behavior of both the osmotic
compressibility and the correlation length of the concen-
tration fluctuations. These results have been successfully
compared to those of classical light scattering [1,2]. In
fact, different mechanisms of wave-medium coupling can
be responsible for the induced concentration modulations
in liquid mixtures. It has been demonstrated in recent
years, for example, that a thermal grating gives rise to a
concentration grating due to thermodiffusion [1]. Be-
sides, it has been suggested that electrostrictive processes
can also induce sizable concentration gratings in binary
mixtures [3]. Using microemulsions as particular mix-
tures, we have previously demonstrated by self-focusing
experiments that both thermodiffusion and electrostric-
tion have to be simultaneously taken into account in or-
der to explain the behavior of the very large nonlineari-
ties observed in the vicinity of a critical point [4,5].

More recently, we have performed a degenerate four-
wave-mixing (DFWM) experiment to separate the elec-
trostrictive from the thermodiffusive contributions [6].
In this experiment the main idea was to use the simul-
taneous excitation of two gratings characterized by spa-
tial wave vectors of different amplitudes. Since
thermodiffusion is a nonlocal process in contradiction to
electrostriction which is local in behavior [5], the two
contributions have different wave-vector dependences.
The separation of the reflectivities of the two gratings by
means of their different response times can then lead to
the evaluation of both contributions. However, the
theoretical interpretation of the experimental data is
difficult if one considers both electrostrictive and
thermodiffusive contributions for each grating since their
wave-vector dependences and critical behaviors are com-

1063-651X/94/49(3)/2141(9)/$06.00 49

pletely different.

We propose in this paper a quantitative model to de-
scribe DFWM in a critical binary liquid mixture. The
critical increase of electrostriction is related to that of the
osmotic compressibility characterized by a ¥y =1.24 ex-
ponent while the critical increase of thermodiffusion is
characterized by a v=0.63 exponent (Ising model n =1,
d=3) [5]. Thus, close enough to the critical point, the
electrostrictive process always overcomes thermodiffu-
sion. The measure of the reflectivities of both gratings
when approaching a critical point results then in a
separate determination of the critical behaviors of elec-
trostriction and thermodiffusion. Moreover, the analysis
of the formation and relaxation dynamics of the gratings
leads to the critical exponent v of the correlation length
of the concentration fluctuations. We next report on the
comparison between these theoretical predictions and ex-
perimental data obtained in a particular micellar phase of
microemulsion.

On the other hand, due to the high value of the non-
linear index of refraction of critical liquid mixtures close
to their critical point, these systems can be considered to
be interesting materials for phase-conjugate mirror appli-
cations. We show in this paper that reflectivities up to
10% can be experimentally achieved in a critical mi-
croemulsion. The limitation of this reflectivity related to
the wave vector of the induced gratings is theoretically
and experimentally analyzed. However, we show that at
high laser input powers other limitations have to be taken
into account. The possibility of destructive effects on
gratings due to convective processes and spinodal decom-
position is discussed.

The model proposed to describe DFWM in a critical
binary liquid mixture is presented in the first part of the
paper. In the second part we present the experimental re-
sults and discuss them with respect to the model previ-
ously developed.

I. THEORY OF DFWM
IN A CRITICAL BINARY LIQUID MIXTURE

Figure 1 presents the basic configuration of our phase

conjugation experiment. Two counterpropagating pump
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FIG. 1. Basic geometry of phase conjugation via degenerate
four-wave mixing.

beams E,, E,, and one probe beam E, at an angle 6 with
respect to the pump direction intersect each other in the
center of the cell containing a critical binary mixture.
All beams are supposed to be monochromatic at the same
circular frequency w and linearly polarized in the same
direction. In this configuration each pump wave inter-
feres with the probe beam and creates a modulation of
the optical intensity expressed by
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+2|E;|[E,|cos[(k; —k,)-r]} , (1)

where (Ei,Ep ), (k,-,kp) are, respectively, the amplitudes
and the wave vectors of the pump and probe beams, c,
and n are the light velocity in vacuum and the linear part
of the refractive index of the medium. Each couple
(E,,Ep) and (EZ’Ep) induces a refractive-index grating
by thermal and concentration modulations. The one
created by (E,,E,) [respectively (E,E,)] reflects the
pump beam E, [respectively E,] and gives rise to the con-
jugated beam E_ that, in agreement with energy and
momentum conservation, is characterized by the same
circular frequency ® and the wave vector
k.=k;+k,—k,=—k,. The probe, pump, and conjugat-
ed beams will be expressed as

Ep,i,c 2%{

E

piceXplilwt —k,; -r)]tc.c.} . (2)
To simplify our analysis we will restrict ourselves to the
plane wave approximation. The dynamics of the induced
concentration gratings can be obtained by solving the
mass diffusion equation in the medium, including the
electrostrictive and the thermodiffusive contributions [7].
If Cr is the field-induced variation of concentration, this
equation reads
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D,, is the mass diffusivity, and T, and T, are, respective-
ly, the temperature of the medium in absence of field and
its field-induced temperature variation. k; and K  are,
respectively, the thermodiffusive ratio and the osmotic
compressibility of the binary mixture. A is a characteris-
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po» C,, and Dy, are, respectively, the initial mass density,
the heat capacity at constant pressure, and the thermal
diffusivity. In Egs. (3) and (4) we have neglected the dy-
namic coupling between concentration and temperature
(Duffour effect) that is usually small in liquid mixtures
[8]. Qis proportional to the intensity of the field |E|? and
to the absorption coefficient a[ Q =(a /4)|E|?].

The general solution of those equations in the case of a
critical binary mixture will be described elsewhere. Here
we will simplify the treatment and we will only keep the
relevant terms with respect to a DFWM experiment.
Mass and thermal diffusivities are several orders of mag-
nitude apart in binary liquid mixtures. Even close to a
critical point, thermal equilibrium is reached in very
short time compared to the characteristic time resulting
from mass diffusivity. Since we are interested in the dy-
namics of Cy, we will suppose then in the following that
Ty adapts itself instantaneously to the evolution of |E|%.
Using Eqgs. (4) and (5), we obtain the following tempera-
ture equation:

alE|* _

D, VT, +
th E 4P0Cp

0. (5)

We suppose that the two orthogonal gratings are weak
enough to be separately treated in first approximation.
The Fourier resolution of Eq. (5) gives then the amplitude
of the temperature modulation induced by each interfer-
ence pattern:

afE(q,)lz
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(6)

where q; =k; —k,, ¢,=Iq;|, and |E(g;)|*=2|E,||E,|. In-
serting Eq. (6) in the stationary limit of Eq. (3), we find
the stationary value of the induced concentration varia-
tion as a function of the two orthogonal wave vectors

q1,2°
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Since K and k; are independent of g; far from a critical
point, one can notice that only the thermodiffusive con-
tribution (proportional to k;) is wave-vector dependent.
The dynamic behavior of C;; is obtained when one con-
siders that the probe beam is suddenly applied at time
=0 for a duration 7:
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CE(q,,0<Z‘<‘T)=CE(q,)[l—exp(—l‘/T,)]
Celg;, 2> T)=Cglg;)[1—exp(—T/7;)]
Xexp[—(£—T)/7;],

where 7,=1/(D,,q?. In usual DFWM experiments 6 is
small. The two wave vectors are then very different
(g, <<q,) and some remarks can be made from Egs.
(6)—-(8). First, the thermodiffusive contribution for the ¢,
concentration grating is negligible compared to that of g,
since thermal modulations are very small at this wave
vector. Besides, the formation and relaxation times 7, of
this grating are also small compared to those associated
to g, concentration grating.

Close to a critical point, the variations of the medium
parameters are governed by scaling laws including the
divergence of some basic properties. For instance, when
the critical point is approached by changing the tempera-
ture, the osmotic compressibility and thermodiffusive
constant have a critical increase described by [2,9,10]

7Y
1+q%

kr=k2t™",
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where ¢t is the reduced temperature related to the critical
temperature T, by t =(T,—T)/T,. £ is the correlation
length of the concentration fluctuations which diverges
according to

=67, (10

where £, K2, and k2 are characteristic constants of the
binary mixture. The critical exponents ¥ and v are, re-
spectively, equal to 1.24 and 0.63 since critical binary
mixtures belong to the universality class described by the
Ising model d =3,n=1. The behavior of k; with respect
to g& is unknown to our knowledge and we will neglect it
in this paper. This last assumption is not really restric-
tive since an important thermodiffusive contribution is
only expected at a small wave vector for which the
thermal effect is well developed. Then the product g§£ is
small at distances (T, — T) from the critical point current-
ly used in our experimental situations and the corrections
with respect to g £ are slight.

Close enough from the critical point, the formation
and relaxation time 7 of the induced concentration grat-
ing g is also expected to present an original behavior.
According to the Kawazaki scaling theory [11]

_1_ ksT
7l=

671

where K (g£) is the Kawasaki function:

K(x)=3[x""+x>+(1—x "*tan " 1(x)] . (12)

°K(q€), (11)

7 and kjp are, respectively, the shear viscosity of the fluid
and the Boltzmann constant. Note that other parameters
are also characterized by a critical behavior. For exam-
ple, in Egs. (7)-(12) C,, Dy, 0 diverge. But, since their
related critical exponents are small, their critical
behaviors can only be expected very close to T,. They
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will be neglected since their variations are weak com-
pared to those of K, k, and 7.

Inserting Egs. (9) and (10) in Eq. (7), we observe that
the induced concentration variation Cy diverges close to
a critical point. This behavior is illustrated in Fig. 2.
Figure 2(a) shows the evolution of the normalized varia-
tion C§ when one approaches the critical temperature,
for different wave vectors, without thermodiffusive con-
tribution (k;=0). At large wave vectors the rapid in-
crease of the induced concentration variation Cg ob-
served far from the critical point (g§ <<1) saturates as
one gets closer to T, (g€>>1). This saturation occurs
more and more closer to T, when decreasing g. It is
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FIG. 2. Temperature dependence for the normalized concen-
tration variation Cg(q;)=Cglq;)/|B(q;)|> for T.=300 K,
AK9=1, £=44 A. (a) Variation with negligible
thermodiffusion. (b) Variation with positive or negative
thermodiffusion contribution and comparison with the negligi-
ble thermodiffusion case. B=(a/4T,Dy,poC,).
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negligible in the domain 0.1 K<(T,—T)<10 K for
g€,=10"*% The result of the thermodiffusive contribu-
tion to Cy is illustrated in Fig. 2(b) for this small value of
g (g&=10"%. According to the sign of the
thermodiffusive constant k, this contribution increases
or decreases the Cg value. However, since the critical ex-
ponent ¥ of the osmotic compressibility K is larger than
the critical exponent v of k1 (y =2v), the thermodiffusive
effect becomes negligible compared to the electrostrictive
one when approaching the critical point. Moreover, the
thermodiffusive process is only important at small wave
vectors. Due to the g ~2 dependence in the correspond-
ing term of Eq. (7), it rapidly decreases when ¢ increases.
Then, in our experimental conditions, it has to be taken
into account only for the large spacing grating g, and far
from the critical point.

The index or dielectric constant variation induced by
the field results, in a general way, from both T and Cg
variations and can be written as

Setr, )= 26 Cp(r,0)+ 2

g€

aC oT

In the following we will mostly be interested in the

change of the real part € of the dielectric constant

(e=€"+ie€'"). Since close to a critical point concentration

variations Cy are large, we can neglect the small thermal
contribution to 8¢’ and write

Tp(r) . (13)

v 2
ae'(r,z)=g—‘; S Ci(g;,2)cos(q, 1) . (14)

i=1

Inserting Eq. (14) in the classical nonlinear wave equation
leads to the coupled propagation equations of all beams
involved in the DFWM experiment. We are essentially
interested in the evolution of the probe and conjugate
beam amplitudes. Since all the beams are considered as
plane waves, in the configuration represented in Fig. 1,
E, and E are independent of the transverse coordinates
x and y and only functions of z and #. In the approxima-
tion of the slowly variable amplitude, their propagation
equations can be written as [12]

alip(z,lJ a

oz +EEpW)=i[x<q1,z>+x<q2,f>}E:(z,z>(,15)

0EX(z,7) . )
——az—+?Ec(z,/)=t[K(ql,/)-f-x(qz,l)]Ep(z,l‘) R

where a=¢"w/V'ec,, k(g;,/)=(0/2Vec,)[8€q;,2)/
|E(g) P11, ||E,|.

If we first neglect the attenuation of the probe and con-
jugate beams, the medium reflectivity of the probe beam
can be deduced from Eq. (15) [13]:

R(2)=|E,(z=0)/E,(z=0)|?
=tan*{[x(q,,2)+k(q,,2)IL} , (16)

where L is the useful thickness of the sample. We have
plotted in Fig. 3(a) (solid line) the evolution of the static
reflectivity R ( o) in absence of thermodiffusion, when ap-
proaching the critical temperature, for small arguments
of the tangent [R (o0 ) <<1]:
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R(0)={[k(g,, o )+K(g,,»)]L}?

_ _ 2
= LA S (oL )2
1+(g, 600t 7% 14+(gy60)t ™% ’

(17)

where & is the constant prefactor of k. As expected, we
observed a strong increase of R( ) due to the divergence
of the thermodynamical parameters when (7, —T) tends
to zero. The condition R(o)<<1 is no longer satisfied
for the pump power chosen in Fig. 3(a) in the domain
(T.—T)<0.1 K. In order to continue satisfying this
condition when decreasing (7, —T), the pump intensities
have to be reduced. When approaching the critical point,
we have to note that the contribution to the reflectivity of
the fine grating g, saturates much more rapidly than that
of the coarse grating g,. We expect then to experimen-
tally observe the disappearance of the fine grating contri-
bution as one gets closer to the critical point.
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FIG. 3. (a) Evolution of the reflectivity in the weak signal re-
gime in the absence ( ) and presence (— — —) of turbidity
of the sample. (b) Theoretical evoluticon of the turbidity with
respect to temperature for £=44 A, k=1.22X10"7 m™},
70=0.01 cm ™!, and 7.=300 K.




49 PHASE CONJUGATION IN CRITICAL MICROEMULSIONS

If the pump intensities are kept constant when
(T.—T) tends to zero the tangent argument continu-
ously increases and the approximation of Eq. (17) is
no longer valid. Equation (16) shows that R() di-
verges when {[x(g,,o)+k(q,,»)]L}=(n+1)r, with
n=0,%x1,%£2,... . From these successive divergences, it
can be expected to experimentally observe oscillations of
the reflectivity when one approaches the critical point at
constant pump intensities.

Next we consider the influence of the scattering losses
on the conjugated signal in critical liquid mixtures.
These losses become huge in the vicinity of a critical
point, due to the divergence of the correlation length of
the concentration fluctuations & The turbidity 7, of the
mixture increases according to the following scaling law
[14]:

T =1t TT(AKEN) , (18)

where I'(x) is a function of the following form:
F(x)=[(2x24+2x+1)/x3*]In(1+2x)—2(1+x ) /x % '3
diverges according to Eq. (10). The divergences of 7, as a
function of (T, —T) is presented in Fig. 3(b). It results in
a saturation of R(w). To take into account in Eq. (15)
the beam intensity attenuation due to the turbidity, it is
worth noticing that the product E,E, is not dependent on
z. k=k(qy,o)+k(g,, o) is then a constant in all
the medium. Defining the evolution of E, and E,
by Ep(z,l‘)=Epexp(—Ts/22) and E.(z,7)=E_{l
—exp[ —7,/ 2(L —z)]} Eq. (15) yields [13]

_ 4x’exp(—7,L)tan*(k'L)

R(x)
[2«'+7,tan(k'L))?

) (19)

where «'=1/Kk%xp(—71,L)—(17,)>. The saturation of
R( ) related to the variation of 7, given in Fig 3(b) is
shown on the dotted line of Fig. 3(a). This demonstrates
that scattering losses can be an important limitation to
the use of critical media as conjugated mirrors when one
approaches the critical point.

II. EXPERIMENTAL RESULTS

The critical mixture used to check the previous
theoretical predictions is a critical microemulsion.
Water-in-oil microemulsions are stable suspensions of
surfactant-coated water droplets called micelles, a few
nanometers in diameter, in an oil-rich continuous phase.
In this system critical consolute points due to micellar in-
teractions have been discovered and analyzed [15]. Close
to the critical consolute point, the system behaves like a
critical binary mixture. However, in microemulsions, the
critical behaviors are observed far from the critical point
since the micelle dimensions are larger than those of clas-
sical molecules involved in classical critical binary liquid
mixtures (typically 8 nm in diameter in our case com-
pared to a few angstroms). Moreover, if the refractive in-
dex of the micelles is different from the index of refrac-
tion of the surrounding medium, the size of the micelles
confers to such a system a higher polarizability than that
of simple binary liquid mixtures. Those characteristics
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show that a critical microemulsion is a good candidate to
obtain a strong reflectivity in a DFWM experiment.

The experimental setup presented in Fig. 4 has been
described in a previous paper [6]. Two pump beams of
intensities 7, and I, and one probe beam I, at an angle 6
from the pump direction are split off from the 514.5-nm
output of a cw Ar™ laser. The angle 6 can be varied from
1° to 20°. In this variation the coarse grating has a period
that varies from 30 to 1.5 um while the period of the fine
grating remains nearly constant around the value
A/2=0.22 pm. The 1-m focal lens forms in the cell a
waist of 120 pm in diameter. The probe beam is slowly
mechanically chopped and the conjugate wave is detected
by means of a photomultiplier and a signal averager. The
2-mm-thick cell contains a four-component microemul-
sion, whose composition is the following in mass percen-
tages: toluene 70.6%, butanol 16.4%, water 8.9%, sodi-
um dodecyl sulfate (SDS) 4.1%. This mixture presents a
critical point at T,=33.95°C. A rectangular capillary
glass tube (thickness 0.3 mm, width 4 mm) is located in-
side the cell close to the input plane of the probe beam in
order to prevent convective effects due to temperature
and concentration gradients induced in the mixture as
discussed later in this paper. No signal is observed if this
capillary is removed. The cell is inserted in a
temperature-controlled oven whose temperature stability
is =0.02°C.

A typical signal obtained when the probe beam is
chopped at 3°C from the critical point is presented in
Fig. 5. Two different characteristic times related to the
formation and relaxation of the two induced gratings can
be evidenced. Since the time constants of the two grat-
ings are far away from each other [for 6=7°,
71/73=(q,/9,)*=330], they cannot be simultaneously
resolved in this figure. The formation and relaxation of
the fine grating appear instantaneously in this graph.
The dots represent experimental data. The solid curve
corresponds to a fit of these data with the theoretical
curve obtained from Eq. (17) and exponential formation
and relaxation of the gratings according to Eq. (8) with a
time constant 7,=107 ms corresponding to the coarse
grating ¢, and 7,=0 corresponding to the fine grating g,.

Ar *laser beam

FIG. 4. Schematic diagram of the experimental setup. BS’s:
beam splitters; C: cell.
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FIG. 5. Typical degenerate four-wave mixing signal at
6=17.30° with the same pump and probe polarization, pump ex-
citation of duration T, =1.1s. The solid curve represents a fit
according to Eq. (24).

The agreement is good. We can clearly understand this
temporal behavior. When the probe beam is applied we
first observed a step due to the quasi-instantaneous for-
mation of the fine grating g, followed by a slow increase
of the reflectivity induced by the formation of the coarse
grating q;. A similar behavior is observed when the
probe beam is stopped. The fine grating vanishes rapidly,
inducing a step in the reflectivity and after that a slow de-
crease of the signal is observed due to the slower diffusion
of the micelles in the coarse grating. Note, however, that
the amplitudes of the two steps related to the formation
and the relaxation of the fine grating are different. This is
due to the coupling between both gratings involved in Eq.
(17). During the formation of the fine grating, the coarse
grating is practically absent and the term
2[k(q,2)k(g,,2)] is nearly zero. On the other hand, this
term is non-negligible during the relaxation of the fine
grating.

In order to clearly evidence the contributions of the
two concentration gratings to the conjugate wave we
have used different configurations of the pump and probe
polarizations. The experimental results are presented in
Fig. 6 for a small angle 6 between the pump and the
probe beams. When the fine grating is absent [Fig. 6(b),
I, polarization perpendicular to I, and I, polarizations],
only the effect of the coarse grating with a large time con-
stant is observed. If the coarse grating is absent [Fig.
6(c), 1, polarization perpendicular to I, and I, polariza-
tions] we observe only a fast contribution. No signal ex-
cept a weak noise due to the scattering of the probe beam
is observed when no useful grating is induced in the sam-
ple [Fig. 6(d), I, polarization perpendicular to I, and I,
polarizations]. Besides, these results show clearly that
contributions of the thermal gratings to the conjugate
wave are very small.
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Next, to probe the linearity of the medium response
with respect to the intensities of the pump beams, we
have measured the amplitude variations of the signal as a
function of the total laser intensity. In our experimental
configuration, we expect to observe an increase propor-
tional to the cube of the total laser intensity. A typical
experimental result is presented in Fig. 7 at 10°C from
the critical temperature. At low power the data are in
good agreement with the expected behavior. However, at
larger intensity a systematic deviation with respect to this
behavior is always observed. This discrepancy cannot be
attributed to the oscillatory behavior of R( ) given by
Eq. (16) since the experimental reflectivity remains much
smaller than 1. Then the development of Eq. (17) is al-

g | (a)
=) Ll ult 6=>5°
= l”ul'w Al
£ MW Al
5 L I
~ .
B \
‘1 dn(q,)
I
dn(q,) b
W AT j
|
1 L 1 L 1 1 1 L
0 1 t(s)
gz (b)
=
=
o
BF
o
1 1 1 1 1
0 1 t(s)
(©)
[
0 1 t(s)
(d)
1 yl 1 1 1
0 1 t(s)

FIG. 6. (a) DFWM at 6=5° with the same pump and probe
polarizations. (b), (c), (d) Same evolution with orthogonal polar-
ization of one of the three beams: (b) the backward pump beam,
(c) the forward pump beam, (d) the probe beam.
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FIG. 7. Evolution of the intensity of the reflected wave as a
function of the total laser power. The solid curve is a fit assum-
ing a cubic dependence.

ways valid. It could be instead due to convective motions
occurring in the mixture when concentration gradients
are large enough as discussed below. Close to the critical
point this phenomenon is observed at lower power: less
than 1.5 W at 0.3 °C to the critical temperature.

We have also analyzed the temperature behavior of the
reflectivity when we approach the critical temperature.
In order to avoid any nonlinearity of the medium
response with respect to the beam intensities, the total
laser power was kept below 1 W. The angle 6 was fixed
at 7.30°. The comparison of Figs. 8(a) and 8(b) demon-
strates that, due to the divergence of &, the fine grating g,
saturates farther from the critical point than the coarse
grating g,;. The instantaneous contribution of the fine
grating which is important at 5°C from T, [Fig. 8(a)] has
almost disappeared at 0.5°C from T, [Fig. 8(b)]. From
such a set of data we can study the critical evolution of
both gratings. However, since the contribution to the
signal of the fine grating is less and less important as one
approaches the critical point, a quantitative analysis of
this contribution remains difficult. On the other hand,
we can quantitatively analyze the contribuiion of the
coarse grating to the reflectivity. This is presented in Fig.
9. As expected, we observe a huge increase of the
reflectivity when T tends to T,: the reflectivity increases
by more than three orders of magnitude. In order to
compare these data with our model, we have to introduce
the turbidity of our sample [Eq. (18)]. Turbidity mea-
surements had been previously carried out and will be
published elsewhere. Using these values of turbidity and
other relevant parameters of our sample (§,=44 A,
v=0.63, ¥ =1.24),0only one adjustable parameter is need-
ed to fit measurements with theoretical predictions given
by Egs. (7), (9), and (10). A multiplying factor is chosen
so that the theoretical reflectivity is equal to the experi-
mental one at 29.4°C. This fit of the variations of the
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reflectivity square root as a function of temperature [16],
taking into account only the contribution of the coarse
grating, is presented in an inset of Fig. 9. The solid curve
presents the theoretical variation, dots are the experimen-
tal data. A very good agreement is observed. Note, how-
ever, that the closest point from the critical temperature
deviates appreciably from the theoretical curve. This in-
dicates that not all of the relevant processes are taken
into account very close to the critical point. Concerning
the dynamics of the conjugated signal, we have plotted in
Fig. 10 the evolution of the coarse grating relaxation with
temperature. We observe a divergence of the relaxation
time 7, when T tends to T,. This time constant increases
from 0.036 s at 8° C from the critical point to 0.43 s at
0.3°C from the critical point. In the same graph we re-
port the fit obtained from Eq. (11) using the following
variation of viscosity 7(7)=(0.019T +7.121)10~? poise
(Tin K) [2]. We observe a good agreement of the fit with
our experimental data. Note, moreover, that we have no
adjustable parameter in this fit.

Finally, we have analyzed the behavior of the
(b)
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0.0 0.5 1.0

FIG. 8. Evolution of the DFWM signal when approaching
the critical point for §=7.30". (a) Large contribution of the fine
grating at 5°C from T,. (b) Negligible contribution of the fine
grating at 0.5 °C from T,.
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reflectivity when one increases the pump and probe beam
powers beyond the domain where the medium response is
linear. Far from the critical point, we observed satura-
tion of the reflectivity to values of the order of a few per-
cent. At 0.15°C from the critical point, the reflectivity
saturates at about 10% and then rapidly decreases as we
further increase the laser power. The conjunction of two
different processes could be responsible for such an obser-
vation. First, as we increase the total laser beam power
the temperature and concentration variations of the sam-
ple can drive the system beyond the critical point and in-
duce a phase separation [17] through a spinodal decom-
position which blurs the gratings. On the other hand,
convective instability in our cell can limit the amplitude
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FIG. 10. Evolution of the relaxation time of the coarse grat-
ing when approaching the critical point. The solid curve is a fit
from Eq. (14) with no adjustable parameters.

FIG. 9. Evolution of the coarse grating con-
tribution to the reflectivity under steady-state
pump excitation when approaching the critical
point. The solid curve is a fit according to Eq.
(27) with one free parameter. The inset
presents the evolution of the square root of the
reflectivity as a function of T in logarithmic
coordinates. The curve is obtained from the
proportionality of this function to K; and
from the divergence of K given by Eq. (10).

of the concentration grating, as we have already men-
tioned. Indeed, if in simple fluids an unstable situation is
only associated to the thermal expansion of the density,
in binary fluid mixtures, density may also vary with the
concentration. This second mechanism, which is diver-
gent at the critical point, is often dominant in mixtures
and can lead to an important decrease of the convective
threshold. By analyzing its critical behavior, it is possible
to evaluate at which distance from the critical point it be-
comes important. According to [18], for a mixture layer
of thickness d, convection develops if the Rayleigh num-
ber R, related to the concentration gradient VC is larger
than 720:

d*‘vC
RC=—F—)§B——- =720, (20)
D,m
where g is the acceleration due to gravity and

B=1/py(3p/3C). Since VC diverges in the vicinity of the
critical point and D,,=D2t" the Rayleigh number R,
also diverges. When contribution to VC is mainly elec-
trostrictive, R, behaves as v (Rcmt*ZV in the
thermodiffusive case). Typically in our system for an in-
cident beam power of 25 mW per fringe (laser beam
power P=1 W and 6=7.30°) and d =60 pum, the elec-
trostrictive gratings are progressively destroyed by the
convective flux when (T,—T)<1 K. This shows the
drastic increase of the convective processes close to the
critical point and qualitatively explains the observed de-
viation of the reflectivity from the theoretical curve as we
increase the laser power. In the same conditions, the
thermodiffusive contribution to convection is negligible
since instabilities develop only when (T, —T)<4X1072
K.

In conclusion we have developed a quantitative model
to describe DFWM in critical binary liquid mixtures and,
as an example, we have experimentally analyzed the cw
phase-conjugate signal obtained with a critical mi-
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croemulsion using a cw Ar* laser. Experimental data are
well described by our model except at high laser powers
and very close to the critical point where perturbations
induced by the waves prevent a simple quantitative
analysis. In particular, the critical increase of the
reflectivity and the relaxation time obeying the predicted
scaling laws have been observed. A reflectivity up to
10% and a critical slowing down up to one order of mag-
nitude have been achieved. Besides, it should be kept in
mind that this method could be an interesting tool to
quantitatively characterize critical mixtures. For in-
stance, it is well known that single-scattering Rayleigh
cross sections are difficult to obtain near the critical point
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by classical light-scattering techniques, due to multiple-
scattering problems, in the domain where the turbidity is
very high. Since the conjugate signal is proportional to
the square of the single-scattering Rayleigh cross section,
this paper demonstrates that this parameter can be ob-
tained from DFWM experiments if the turbidity of the
sample is correctly taken into account.
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FIG. 4. Schematic diagram of the experimental setup. BS’s:
beam splitters; C: cell.



